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Preface

This research studied the ordinary least-squares,
weighted least-squares, median slope and mean slope
techniques for fitting data with learning curve theory. The
basic idea was to find the best technique to use for eqgual
and unequal lot data with normal, triangle and Cauchy error
term distributions. Along the way, the Cauchy distribution
proved to be too unwieldy and was dropped.

The analysis showed that no technique was best in any
particular situation, each technigue had tradeoffs among t h
estimates of the parameters (first unit cost and learning
curve coefficient), the dispersion of the data points around
the fitted line and the range and bias of future predictions.
However, the data should improve your understanding of these
techniques and their limitation when you use them in the
future.

I wish to thank my thesis advisor, Roland D. Kankey, for
his tireless efforts in making this the best research that it
could be. I alsc wish to thank my wife, Michelle, for
putting up with all my fits when I had 50 computer runs
spread throughout the house and couldn't fincd the one I
wanted, and for her efforts in helping me get the thesis
finished in a timely fashion.

Charles R. Avinger
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Abstract

This thesis was basic research on fitting techniques for
learning curve. The unit formulation of the learning curve
theory was [it using two parametric fitting technigues,
ordinary 1lcast-sguares and welghted least-square, and two
nenparametric fitting technigues that were called median

nd mean slopge. Comparisons were made Setween the

0]
e
]
9]

technigues in four data cases, a2gual lot sizes with normally
Jdistributed error terms, unegual lot sizes with normally

ribdutod error terms, ejual lot sizes witn triangularly

Ve

distributed error terms and unegual lot sizes with
triangularly distributed error terms. The possibility thac
error terms could be distributed based on the Cauchy

distribution was tried and rejected.
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The data for “thesze four cases was si
S73tem and zZased on a [irst unit cost of 23,330 and an 30%
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distribution of .12 (in logarithmic form) and th

range of -.36 to .25 (in logarithmic form;
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o include all error terms. The learning curve heuristic was
uzed to determine lot plot points.

The fitting t ues were cempared on thelr estimation
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9]
By
3
—
RV

of the parameters (first unit cost and the learning curve

(D]

oefficient), the dispersion of the data points -“o the fitted

line and the predictions of future costs.
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AN Analysis showed that in cases of equal lct sizes the
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1oy
G : : : .
. ordinary least-squares technigue has more bias than the

N . . . . .

iq nonparametric techniques, but still is a good estimator. In
"y cases of unegual lot sizes the weighted least-squares and the

N

)

;) ordinary least-sqguares techniques performed well. Ordinary
s

ey : , . .

ey least-squares estimated the parameters with the least bias
I.‘-‘

5 . . . . ,

) but had average predictions errors that increased with the
L
‘ol . . : - .

unit number. Weighted least-sguares estimated the zarzmetemrs

e with the most bias and had predictions errors that, on

o
1 . .

XL, average, started high and turned low as the unit numbers 3ot
" '.%

& larger. The nonparametric techniques did a better job of

- \"‘ . . - - N - .
L7, gredlicting future costs, 1n that the mean pradicilons were
4‘".-

ey closer to the population costs. However, these technigues
v; ¥ -‘. . . .
{ had wider ranges of predictions,
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ANALYSIS OF LEARNING CURVE FITTING TECHNI(ULS

I. Introduction

General Issue

Department of Defense and Air Force leaders are
concerned with the management and control of cost to grccure
weapons systems. Accurate cost forecasting or prediction 15
a vital element of cost management and control. Proger
estimation of production costs, the most significant gortion
of acquisition costs, is critical if DCD decision makers are
to properly choose between the various alternate force weazon

systems. As Gansler (6:3) and Bryan and Clark (2:105)

indicate, military acgquisition programs in the recent past

have all toc often 2ncountered uncomfortable levels of cost
growth. Since errors in cost estimates are contributors tc

this cost growth, accurate cost estimation is vital if cost
jrowth i3 to be minimized. The identification and analyslis
of alternate cost estimating technigues, and the comparison
among and between existing techniques, contributes to the

development of the profession,
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Specific Issue

ot Weapon system production costs fall into two categories.

There are recurring costs, such as labor and material, and

1%l
n
- non-recurring costs, such as factory setup. Historically,
‘
- . \ ~
! recurring costs are the largest part of the costs to produce
\
rl weapon systems. S0, estimation of these recurring costs is
g% ]
'3 . . . .
-; very important. Recurring production costs are estimated i
L !
¢ with the use of the learning curve theory. This ubiquitous |
y technigue nhas achleved the status of 2 stundard accepted cost
d
o . . . -
X analysis tool. The learning curve theory, sometimes referred
. to as the cecst improvement curve theory, states that cost:z
q
: decrease in a regular pattern as more units are produced
. (11:16). For example, the unit formulation of the learning
. curve states that costs to produce a unit decrease by a
i
- constant percentage as the cumulative number of units
w
-~ .
. produced doubles (1; 19). If the cost to produce the third
)
! unit was $10 and costs reduce by 10 percent between doubles,
Q the sixth unit would cost $9 and the twelfth unit would cost
N
& se.10.
‘,‘ .
" The most common way to estimate the learning curve
q
2 function from actual data uses a least-squares fitting
g !
¥
‘2 technique. Most who use this technique then assume that
4
errors follow a normal {(or Gaussian) distribution. The
@
4 normal probability distribution is assumed to account for the
o random fluctuation in costs. This random fluctuation is
8
N commonly referred to as the random error term. While this
F o
P
-",1
. 2
-
o
q

a
!

A
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technique is very popular, there are other techniques of
fitting a mathematical function to the data and other
probability distributions that could be used. This thesis
compares results of various curve fitting techniques given
different error term probability distributions, determines
the situations where each technique works best and comgares

the advantages and disadvantages of each.

Investigative Questions

This thesis covers three main areas. First,
identification of the parametric technigues currently used :to
determine learning curve functions and identification of
nongparametric techniques that could be used to determine
learning curve functions. Second, identification of
probability distributions for the random error terms. This
identification includes the currently used probability
distrihutions and other potential distributions. Third,
evaluation of the fitting and forecasting performance of each
technique under different conditions. Results of the

selected curve fitting techniques are compared over various
combinations of error term probability distributions and lot

sizes of production units.

Background
The learning curve theory was first published in 1936 by
Wright (19). Wright advanced the theory that cumulative

average costs to produce aircraft decreased by a constant
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percentage as the number of aircraft produced doubkled. He
also used his theory to review the cost of producing
automobiles. This theory has been applied to many production
items since 1936. Learning curves are used extensively
throughout DOD for cost estimating, contracting, planning and
scheduling.

There are two formulations that are commonly used for
learning curve work (2; 1l). First, the unit formulation,
which states that the cost to produce each unit declines by a
constant percentage as the number of units produced arz
doubled. Second, the cumulative average formulation, which
states that the average cost of all units produced declines
by a constant percentage as the number of units produced
doubles. The unit formulation was selected for use in this
research because it is favored by theoreticians and
practioners; and is most tractable.

The equation for the unit formulation of the learning

curve 1is:

b
~—

vy = A * xB (

where

the cost of each unit

the cost of the first unit

the sequential unit number in the production. For
example X=101 says that the formula will be used to
compute the cost of unit number 101

B = a constant related to the rate of cost improvement
(2: Chap 7,8-9), this number will be called the
learning curve coefficient in this thesis

=P

W on

The unit formulation of the learning curve is based on the

premise that a constant percentage change in the cost of a

) K nlX 5‘ ."t'.& 0“ ", § {MEQ{LCA‘::’\CMM




unit will drive a constant percentage change in the unit
cost. This means that formula (1) produces a straight line on
log-log graph paper where equal distances between numbers
represents equal percentage changes (1:10-12). Formula (1)
is thus often said to be a log-linear function (see Figures 1
and 2 on page 6). Because of this logarithmic property,

formula (1) can also be written as:

¥Y' = A' + B * X! (2) ;
where
Y' = 1n (Y)
A' = In (4)
X' = 1n (X)
ln = the natural logarithm function

and is called the linear form of the unit formulation. This
second formula is derived from formula (1) by taking the
natural logarithm of each side of the equation. Formula (2)
can be plotted on standard graph paper and will produce a
straight line. One term peculiar to the theory is the idea
of a learning curve slope. A ten percent rate of learning
(or reduction in cost) between dcubled quantities 1is
equivalent to a "learning curve 3lope"” of ninety percent, a
twenty percent rate of learning is equivalent to an eighty
percent slope. For the purposes of this research it is
sufficient to note that there is a direct relationshipg
between the B parameter, the learning curve slope and the
learning rate. Given any one, the others can be uniquely
identified. For a more detailed discussion of the learning

curve theory see Kankey's article, "Learning Curves: A

w
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%ﬂ Review" (11:16-19); Wright's article, "Factors Affecting the
? ‘ Cost of Airplanes" (13:122-128); Volume 1, "AFSC Cost
’H‘ . Estimating Handbook" (2:Chap 7); or Hayes and Wheelwright's
>,

3? chapter, "The Experience Curve" in tneir book Restoring Our
.F: Competitive Edge: Competing Through Manufacturing (7:229-
e 274) .

e

e

;%; Limitations and Assumptions of the Study

| Limitations.

2

? 1. Only the unit formulation is studied in this thecls.
:£ 2. Only one slope for the population is considerec.
'; All simulation is based on one learning curve sloge.

?g 3. Only the case of a standard multiplicative error
éu term is considered (see 2. below under Learning Curve
:1 Assumptions) .

;Ez 4. Lot plot points are determined using the learning
{E? curve heuristic (see the Equal Lot Data section of Chagter 2
;) for an explanation »f this neuristic).

’g Learning Curve Assumptions.

xs 1. The population follows the unit formulatlion ot the
)

Jv learning curve thecry.

33 2. The unit formulation of the learning curve s

'§ specified in standard form by:
e,

%

:

32

-
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where

the cost of the xth unit
the cost of the first unit

> <
[

this number will be called the learning curve
coefficient 1n this thesis.

X = the unit number

E = the multiplicative error term.

This i1s a multiplicative model which is log-linear.

Therefore, any probability distribution of the error term

= a constant related to the rate of cost improveme

nt,

will be specified in the transformed state, that 1s to cay 1in

the linear form.
3. The unit formulation of the learning curve i3

specifled 1n linear form by:

unit

Y' = A' + B * X' + e (4
where
Y' = the natural logarithm of the cost of the xth unit
A' = the natural logarithm of the cost of the first
B = the szame as in formula (3)
X' = the natural logarithm of the unit number
2 = the random error term = ln(E) from formula (2,

A' and B' are the parameters -0 be est:mated

Model Assumptions.

l. The expected value of the cost of unit x can be
written:
= A' +# B * X' {5)
where

E(Y'y) = the expected value of y given x

the other variables are defined the same as in
equation (4)
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2. The random error terms, e, are independent. That is

o say, the value of the error term at a given x does not

depend upon the value of the error term at any other x.

3. The random error terms, e, come from porulations
each having a mean of zero and a constant variance. This
implies that any probability distribution of the random error

term agpplies tc the unit learning curve formula 1n the linear

form, formula (4). For instance, if the normal probability
dirstribution 1s specified in the linear form, the

Aistribut.on is called log-nermal in the standard form of the

model. It should be noted that a log-normal distribution 1is

very different from a normal distribpution.

Definitions

Rancom error term - the difference between the actual
value of an item and the expected value of that item. The
random errnr can te viewed as the portion of the cost of the
xth unit not specified by formula (3). That is to say, the
etfect of any variable, other than the unit number, on the
cos* of 31 unit contributes to the error term. For example,
the error term associated with your height would be the
difference between your height and the average height of all

people. If your height was 73" and the average height of all

people was 71", the error term would be the 2". When dealing
with the unit learning curve, the rando.a error term would be
the difference between the actual cost of the xth unit and

the expected cost of the xth unit as specified by formula (5).
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i'i. .
;ﬁ Nonparametric statistics - statistics that reguire few
] 3
ihy assumptions about underlying populations, most notably tnae
[
{d assumption about the normal distribution of the population
*4
) (8:1). Nonparametric statistical tests do not require a !
Ay
" normal population assumption and are generally easier to use
Ly » ,
>, and understand according to Hollander and Wolfe (8:1). They
o
ﬁﬁ Go on to state that, based on theoretical investigations,
‘u
oy . . . .
these nonparametric statistics do not usually forgo much in
:Q comparison to parametric statistics. Conover states:
\
wt
> . . . ‘ L
jﬁ A statistical method 1s nonparametric if it satisfles at
20X least one of the following criteria:
pla 1. The method may be used on data with a nominal
et scale of measurement.
254 2. The method may be used on data with an ordinal
5 scale of measurement.
o 3. The method may be used on data with an interval or
v ratio scale of measurement, where the distribution
function of the random variable producing the data
- is either unspecified or specified except for an
Ly infinite number of unknown parameters. (5:94)
N
>
| ; Conclusion
Y
;d The importance to DOD of accurate estimation of weagons
RO
% systems cost cannot be overstated. The recurring production
.’. 1’
N
rod costs of these weapons systems are a major part of the total
M
J._ life cycle cost of the weapon system. This thesis anaiyzes
b; several aspects of the method almost universally used to
- ‘.\
iy . . . .
;VQ predict the recurring cost, learning curve theory. The unit
od formulation of the learning curve theory is analyzed with
‘{i both parametric and nonparametric techniques.
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II. Literature Review

Two literature reviews were performed, one to identify
fitting techniques for the learning curve and the other to
identify potential probability distributions for the error
term. An attempt to find previous studies comparing these
fitting techniques proved fruitless, no previous studies were

located.

Fitting Techniques

A literature review was performed to identify the
fitting methods or techniques used to determine the
mathematical formula of a learning curve given existing data.
The review identified the current techniques used to estimate
the learning curve parameters and some additional technigques
that could be used. Advantages and disadvantages of each
technique were also identified. All fitting techniques
identified fit linear data so the transformation from log-
linear to linear is necessary before the intercept (A) and
the slope (L) parameters can be estimated. Each technigue
estimates the value of the a and b statistics (estimates of
the transformea parameters A' and B') for formula (2) based
on existing data. Traditionally, population parameters are
denoted with Greek letters, e.g. alpha and beta, but I will
use capital letters, e.g. A and B. Statistics, or estimates

of these parameters are Roman, e.g. a and b.

11
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:53 Current Techniques. Currently, there are two techniques
3! that are commonly used to estimate the learning curve
:: formula, ordinary least-squares and weighted least-squares
}?& (2:Chap 7). Both of these techniques are among the

-
:3 parametric techniques commonly referred to as regression
élﬁ technigues.
.3 Ordinary least-squares is the most common technique

)
*3 (2:Chap 7). Least-sguares 1ls a parametric technique that has
'Ej some underlying assumptions. These assumptions were
Aisz discussed as model assumptions in the Introduction chapter.
;? The least-squares technique determines the a and b statistics
}ﬁ for formula (2). This determination is done by summing tne
N

-:i squared differences between each lot's average actual cost
,*: per unit and the average cost of each lot estimated by the
Y

:3: improvement curve formula. For a more detailed explanation
.
Sﬁ of the ordinary least-sgquares technique, see Neter, et. al.,
L;‘ Applied Linear Regression Techniques (15:23-52). Rancdom
;_ﬂ errors are assumed to be normally distributed when using
’35 ordinary ieast-squares, according to Johnston in Econometric
M

p—

VMethods (10:158-171,181). The main advantages of the least-
squares technique 1s the ease of use, the ability to get
gyuick answers, and the technique's ability to still give good

ancwers when some of the assumptions about the technigue are

violated a small amount. The main disadvantages are that the

technique is not theoretically correct when the lots have

different weights and that the technigue requires a specified

s M S e on
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probability distribution for the error terms before any
testing or interval estimating (15:48). Lots have equal
welights when the same number of units are in each lot. When
lots have different numbers of units in each lot, the lots
have different weights. For the specific learning curve
case, the normal probability distribution assumption causes
the error term to be normally distributed in the log-linecar

or transformed state (as in formula (4)).

(%)
Poe

welghted least-squares 15 used when the data has anegu
production lot sizes. For example, weighted least-sqguares
would be used if the data contained the average cost of each
Lot and the first lot contalned 20 aircraft, the second lo:

1

contained 50, and the next seven lots contained 10{ each.
weighted least-squares would give less emphasis to the first
two lots since they are small and more emphasis to the last
seven iots. The welighted least-squares method of dete mining
the statistics a and b would weight each average cost based
on the numier of units in the lot (15:167-172). The main
feacon kenind using weighted least-sqguares rather than
ordlnary least-sjuares Ls because the expected variance of

1

L0t COZLt3 1S not the same (15

:168). This use of weighting

15 an application of the Central Limit Theorem, which states:
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It v.,...,Y, are independent random observations from a
population with probabtil.icy function f(Y) for which [the
variance)] sigma-3guared is finite, the sample mean Y:

7 = the sum from i = 1 to n of Yi/n
{5 approximately normally distributed when the sample
size n .s reasonably lLarge, with mean E(Y) and variance
(sigma-sjuared), n (15:6).

According to Murphy, it is easily shown that the variances of

2ach lot are unegual, even 1f the random error terms have the

same variance (13). From the above theorem, if the random
error for an aircrafsz were 20000, then the random error for
the first lot would be 1000 (20000/20), the rancom errcr Lor

the second lot would be 400 (20000/50), and thne random error

1 n
1nz

(%)

for the third lot would be 200 (2000C/10C). Murphy exzi

The

w

ual

M2

~hat the variance of the average cost of each lot e

variance of the random error term divided by the lot cize.

when lot sizes are different, the variances must be ditferent

=3
Mol

if the random error terms have egual variances as the assur

r

sns reguire. The main advantages of the welighted leas
sguares best fit technigue are the same as the advantages ©
the least-zjuares best fit technijue. The welghted techn: jue

reportedly gives more correct parameter estimates when lots

¥
-

<
t

have different weiqghts, according to Neter, et. al. (15

[0}

172). The weighted technique glives the same answer as the
ordinary least-sguares technique when the lots have egual
weights. The main disadvantage is the assumption of an error

cerm with a normal probability distribution. There 15 also

the question of whether using lot sizes for weights

14
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overstates/overweights the large lots when the data is
transformed into logarithms. For example, a lot composed of
units 11 through 20 includes a doubling (100% increase) while
a lot composed of units 150 through 200 has only a 30%
increase. Should the larger lot get five times the weight of
the smaller lot? This question is deferred to follow-on
research.

Other Techniques. The literature review disclosed two

methods of determining the parameters for formula (2) when
nonparametric techniques are used. The first technigue is
identified by Hollander and Wolfe and by Conover (3:200-206;
4:263-271) and will be called the median slope technigue.

The second technique is identified by Hollander and Volfe
(8:206-208) and will be called the mean slope technigue.

Both of these techniques were tested in this thesis and both
are nonparametric because no probability distribution ic
specified. This lack of a probability distribution meects the
third condition Conover defines for a nonparametric
statistical method (see page 10). Additional technigues that
were not used in this thesis were reviewed.

The main advantages of nonparametric techniques,
according to Conover (5:3), are that the probability
distribution of the error term does not have to be known or
assumed, a "simple and unsophisticated" model is used and the
application of the technigue requires less math because the

model is simple. The main disadvantage is that, since the

15
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o
;}j probability distribution is not known, estimates of equation
5

;
:% parameters and estimates of future costs will have a much
a¥
W wider confidence interval. No other specific advantages or
_: disadvantages can be attached to the median slope or the mean
4H8 .
f: slope technique.

;‘ The median slope technique suggests that the points be
‘)

v put in order from lowest x to highest x, for convenience of
W

Rn analysis, and then requires that the slope between each pair
%)

. of points be computed (8:2035), reference Figure 3. (Note:
1 . . . )
b, for this thesis these points are expressed in logarithms.)
‘(h

“"
O
& A' est.B _

< ~
A >,

':.-'

x

.

b

=
}ﬁ

"

® _J
- Figure 3., Illustration of
" § Median Slope Technique
X
K
;. These slopes are then rank ordered and the median slope taken
9

:. as the estimate of the B parameter from formulas (1) and (2).
?ﬁ The A' parameter is estimated by using the median x and

A
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median y values (4:266-267), as indicated by the dotted line
in Figure 3. When there are an even number of points, the
average of the two middle slopes is used and the average x
and average y associated with the two middle points are used
(8:205; 4:266-267) .

The mean slope technique also uses the slopes between
each pair of points (8:205-208). A simple average sloge is
computed by summing the slopes and then dividing by the
number of slopes. The mean slope technique uses the same
estimation approach for the A' parameter as the median slope
technique (8:206-208).

The four fitting techniques discussed will be usecé to
estimate the unit formulation parameters of the learning
curve in this thesis. A technique that was identified, but
was not used is that of nonlinear regression. Nonlinear
regression, according to Neter, et. al., is an iterative
process that can require a great deal of time to solve
(15:466) . Evaluation of nonlinear regression for learning
curve fitting would be an interesting area for further study,

but was not included in this research.

Probability Distributions

The literature review allowed celection of three
probability distributions for the error term. The normal
probability distribution is currently assumed for the
distribution of the error term. The review identified two

other probability distributions that could be used, the

17
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?& triangle distribution and the Cauchy distribution. These two
ﬁ, additional distributions were identified on the belief that
L the normal distribution was reasonable, or people would not ‘
5; be using it, and any other distribution identified should be
ﬁ: similar to the normal distribution.

i” Normal Distribution. The normal probability

#E distribution is usually assumed for the error terms. The

%ﬂ normal distribution is smooth, symmetrical, continuous and
o bell shaped. It requires that, as the sample size gets very
aé large, a specific percent of the random errors fall within
, one standard deviation (68.26%), within two standard

E; deviations (95.44%), and within three standard deviations

?;3 (99.74%) (13:201-202; 15:517).

e

L: Triangle Distribution. The triangle probability

:: distribution can be symmetrical or asymmetrical. This

'

:n distribution is smooth with a peak at the most likely point,
a’ continuous with a minimum and maximum possible value and

;3 shaped like a triangle. The shape of the distribution can

be specified by the distribution parameters; lowest point,

SEAS

most likely point (where the distribution will peak), and the

L]

o highest point (16:269). When the distance between the

2, ..,:

'i lowest point and the most likely point equals the distance

<,

o . . . .

A between the highest point and the most likely point, the

@

S distribution will be symmetrical, otherwise the distribution
[,

ﬂ" : . . . I3

e ls skewed. When using the triangle distribution with the

3vg)

"

“ learning curve only the symmetrical distribution will be used.
‘

v

s,
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‘%ﬁ Cauchy Distribution. The Cauchy probability
3&, distribution is related to Student's t distribution, as both
:;ﬁ distributions are forms of a Pearson Type VII distribution
::§ (9:13, 154). The family of Pearson distributions are all

A

?; related to the normal distribution, according to Johnson and
fﬂ Kotz (9:9-15). The Cauchy distribution 1is symmetrical,

O

ij continuous, smooth, and shaped similar to the normal

‘& distribution. The Cauchy distribution has "longer and
5\ flatter tails (9:154)" than the normal distribution. (Note
;5: that flatter tails are often also called fatter tails.)

%i Johnson and Kotz specify that the Cauchy distributiocon, with
;f; location and scale parameters egual to 0 and 1, respectiveiy,
;; "is the Student's t distribution with 1 degree of freedom
f:? (9:156-157) ."
&ﬁ The literature review for techniques to fit learning

E§ curve data yielded four techniques that were used in this

ff thesis: ordinary least-squares, median slope, mean slope and
ﬁH weighted least-sguares. The literature review for the

)
& : rrobability distributions identified three error term

L
1. distributions that were used for this thesis: normal,

5 triangle and Cauchy.

X
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W I1I. Methodology

'« ."
‘x? The analysis of fitting technigues was a three step
e _ ' '
j{¢ process. First, costs for production run lots were simulated
;" using the SAS software system for data analysis, using known
(X

:: model parameters A and B and a fixed error term distribution.
~ hl

b . . . . .

oy Second, the various techniques of fitting the learning curve
o

were used to estimate the model parameters. Third, analysis

i -;

.ij of the statistics, dispersion and forecasting ability were
n

‘O . .

N performed. The various techniques were compared for the

different lot data and for the different error term

- distributions.

v

o

E; The true relationship was selected to be an 80% slope
e
i. learning curve with a first unit cost (A) of 25,000. A
‘g
it . X

g learning curve slope of 80% was selected as a typical slope
) :‘.1 . . R

? for airframe assembly operations. An 80% learning curve

slope yields a B value of -.321928095. The general objective

3 !

-
a
‘'

was to see how well each of the fitting technigues estimated

o

the population or true relationship (A and B) and estimated

s

future costs under each of six cases. An 1deal estimating
technique would, on average, estimate A and B correctly, have
a small dispersion of values and forecast with a tight,
symmetrical distribution around the true value. The six
cases considered in this study are based upon combinations of
lot sizes, and error term distributions. These six cases

are:

20
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- Case I: Equal lot sizes, normal errors
- Case II: Unequal lot sizes, normal errors

- Case III: Equal lot sizes, triangle errors

- Case 1IV: Unequal lot sizes, triangle errors
X
i - Case V: Equal lot sizes, Cauchy errors
D
- Case VI: Unegqual lot sizes, Cauchy errors
[f
"
A Simulation of Data
2l The S5AS System was used to simulate the data for lotc
"
' from a production run. First, learning curve data was
" generated for each production run. Second, the data in cach
preoduct:on run was separated into lot data, with equal size
. lots. Third, unequal lot sizes were identified and each
o
- :
by production run was broken 1nto unequal lots. These data
'J creation steps involved the use of many SAS functions.
-, Production Runs. The simulation of production runs
- involved the use of three SAS random error generation
f: functions, each based on a different probability
L")
) : . .
- distribution. A program was written to generate costs from a
t
1) . . N . .
; production run for units 1 through 210. This number of units
N was considered to be long enough to allow for valid

12

comparisons, yet not overstrain the capability of the
computer system for both space and processing time. The data

was generated in the log-linear state and then transformed to

the standard state. The data was generated with the formula:

T S SRR\ D COR SC ORI, |
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:M' ¥Y' = A' + B * X' + e (6)
O,

...

g where

oY the variables are defined in formula (4) with

- A' = 1n(25000) = 10.12663110

:-:- B = 1ln(.8) / ln{ = =-0.321928095

K.~ X' = ln(unlts 1 through 210)

e Y' = In(cost)

) except where the error term is

g e = a random error term times a sizing value

"'

b“ The SAS function for random errors from a normal distribution
a is RANNOR(seed) (16:267-268). The SAS User's Guide: Basics
f\ states that this function will generate a value from a normal
4

Q

} distribution with a mean of zero and a standard deviation of
0

e one. The seed is a number used to start the random number
L

K generation process. For the normally distributed rancom
o

o

':i error 1n formula (6), the error formula was (16:267-268):
>

f :

‘N e = RANNOR{seed) * sigma (7)
l;. where

I

N seed = 1446

d} sigma = the standard deviation

N

) For the trlangular distribution random error in formula (5),
\J

A

S AN ‘

o the error formula was (16:259):

o
"~

‘N e = (BT-AT) * RANTRI(seed, (CT~-AT)/(BT-AT)) + AT (8]
W

L J where

i

B seed = 1346

s BT = the highest triangle distribution value

i} T = the lowest triangle distribution value

o CT = the most likely triangle value = 0

[ X
N For the Cauchy distributed random error 1n formula (6), the
' error formula was (16:265):

ot

o

= -

a~ “~ L

'

3
| @4

2]

‘,
3
Ry
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oy e = RANCAU(seed) * sigma (9)
"

M where

X seed = 446

v sigma = a scale parameter similar to the normal

b distributions standard deviation

The values for Y' and X' were transformed to regular terms

: with the following equations:

N Y = EXP (Y') (10)

"l

' X = EXP (X') (11)

" where

: : 'SE .
N EXP (Y') = e l.e. ¥Y' equals the natural

‘j logarithm of Y.

Y Y = the simulated cost

‘ X = the unit number associated with the simulated cost

: Data was simulated for 100 production runs using ecach of the
o three error term distributions.
% Equal Lot Data. The data for each of the 100 production
W,

" runs for each of the three error term distributions were

&

‘: turned 1nto lot data with each lot size equal to 30 units.

)

In addition, the lot plot point and mean cost of the units in
~ eacn lot were determined. The lot plot point was determined
1
': baszsed on the standard learning curve heuristic where the plot

point 1s equal to half of the lot size plus the value of the
T last unit before the lot started. When the lot size is 30
N
3 and the first unit of the lot was unit 121, the lot plot
o
4 point is 135 (30 / 2 + 120). When the first lot has 10 or
&9
" . . . )
& more units the lot plot point is computed by the number o:!
il
"

] units 1n the lot divided by three.

i
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N
'32 Unequal Lot Data. The data for each of the 100

'.'.\‘
;* production runs for each of the three error term
':\‘ distributions was also used to get unequal lot data. The

}E sizes of the first six lots were determined using the SAS I

- |
e function, RANUNI(seed) in the following equation (l6:236-

[y ) |
oL 238,269) :
o

& lot size = scaling factor * RANUNI{(seed) (12)

9."

! where
}~) scaling factor = a number based on the proposed lot size
&@ seed = 1515
o) RANUNI (seed) = generates a uniformly distributed wvalue
jq between 0 and 1
)

Lot sizes were in the ranges shown in Tabkle 1.

N
0% Table 1. Range of Lot Sizes

Y
‘ Lot Smallest Largest
’ic Number Lot Size Lot Size

e 1 2 10

o 2 15 25

o 3 20 30
Lo 4 25 35
J 5 30 40
wid 6 40 50
K 7 20 78

&&
Pt

g‘ Lot seven was the remainder of the units needed “o bring the
1?? total number of units to 210. Lot plot points and the mean
;Jﬂ lot cost were determined the same way as for equal lot data.
@

QE Estimation of Learning Curve Formulas
U..- —
l' [ ]
~:2 For each production run a learning curve formula was

o

2 estimated using the fitting techniques discussed in the

-

o 24

0y :
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Statistics (17:658-659).

literature review. These fitting techniques are ordinary
least-squares, weighted least-squares, median slope and mean
slope.

Ordinary Least-Squares (15). The ordinary least-

squares technique was run on the SAS system. The data was

converted to linear form with the following transformations:

y = 1ln (Y) (13
X = 1In (X) (14)
where
Y = the average cost of a production lot
X = the unit number of the median unit In the production
1n (izziable) = the natural logarithm function

The ordinary least-squares procedure that was run 1s called
PROC REG (17:658). The statements required were:

PROC REG;
MODEL y = x;

where the statements are defined in the SAS User's Guide:

Weighted Least-Squares (15). The weighted least-

squares technigque was also run on the SAS system. This
technique was the same as the technique for ordinary leact-
squares except tne x transformation was:

x =m * (1ln (X)) (15)
where

the variables are defined for formula (14) and
m = the number of units in the lot

The weighted least-squares technique was only run on

production data with different lot sizes because, as Neter

25

A S8 WY SIS IS NS T R S 1Y T 0, P STAT AT IRD T ONRT
- '.c,.-.ﬁ.ﬁm&M&Mﬂﬁﬁm‘iﬂmﬁ&ﬁ%&ﬁa&»&m‘b&\iﬁ.&



»

1"4":"
5y
.

A

-1 ‘:.‘{
i
X Ak

L A
.

PR
™y~ ol
B

T T

-,-
PRI
)

.V
a
'

AR

-
4y

-

g A
]

l‘L L‘.L“

<

LEEEES
e

[}
1]

RS
-',- PR

et i
7 ; h ‘l..", P
l‘.“& l‘l"

- st

4
Chet

. s "ol
ol ( ) ”
. 7

e '.t'\;:(’,n’.l. >

e

At B

A AN

LA
R
PN

A

"
~
\
™
=
-
LY

\-"h‘\
i’a‘.l. th

J'J‘(‘J'fh

states, the estimated parameters from weighted least-squares
equal the estimated parameters from ordinary least-squares
when the lot sizes are equal (15:167).

Median Slope (8:200-208; 4:263-271). Since no program

existed, a program was written on the SAS system. First, the
program transformed the data as was done in formulas (13) and
(l4) . Second, the program calculated the slope between each
lot of a production run from first lot to last lot, for the
seven lots there were 21 slopes. Third, the slopes were rank
ordered and the median slope picked. Fourth, the program
determined the median lot and then determined the value of

the a statistic from the following formula:

a = Yy - by * xp (186)
where
Ym = the average cost from the median lot in logs
Xn = the x value from the median lot in logs
b., = the median slope, estimate of the parameter E
a = the first unit cost statistic, estimate of the

parameter A’
tean Slope (8:206-203). Again, no program existed so a
program was written on the 35AS system. The program used the
slopes previously determined and computed their mean. Then
the value of the a statistic was determined fr .m formula (16)
with one exception. The value of b, was the mean of the

slopes.
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ﬁj Analysis of the Curve Fittirg Techniques

Le
:f The analysis of the formulas generated using the

“‘ . simulated data was done in three areas. First, the

-

'S distribution of the statistics about the population or true
5

-ﬁ parameter value were compared for each case. Second, the

i

’g fitting technigues for each case were compared based on two
j&' measures of dispersion used by forecasters, the mean atsolute
;; deviation (MAD) and the mean squared deviation (MSD). Thixzd,
i the dispersion of the predicted cost of future units was

1

:i compared for each of the fitting technigues withilin =ach ca:ze.
;g Separate comparisons of each of the fitting techniques were
st made for each case.

55 Distribution of the Statistics. The distributions of
;: the a and b statistics were reviewed. The 100 parameter
E:. estimates for each A and each B were displayed using Tukey's
:i: box-and-whisker type plots (18:39-42). These a and b

‘5: statistics were from one series cof 100 production runs for

¥ each case. Then the plots were compared. For instance, the
;g box-and-whisker plots for the A parameter estimates from all
:é fitting techniques for the equal lot, normal error term case
° :

- were compared.

“S The Tukey box-and-whisker plot identifies the end

'; points, the first (25%) and third (75%) guarter percentile
points and the median point of a distribution. The style of
!

'é the plot, as Tukey explains in Exploratory Data Analysis

-
1

(18:32,39-41), is to draw a box from the first to the third
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quarter percentile points with a bar at the median and to add
a separate line, or "whisker," :to connect each end point :to
the box. This plot was modified by addition of the 5%, 95%
and mean points. The plot and the data points were generated
using the SAS procedure with plotting option,

PROC UNIVARIATE PLCT (16:1182,1187-1188)
The plots were then hand drawn from the data provided oy the
SAS procedure. Since converting these plots to publication
quality is a very time consuming process, only a few sample
plots are included in this thesis.

Dispersion of the Fitting Technigues. The learning

curve formula represcnts the theoretical mean cost for zach
iot data point in the least-~squares techniques and a similar
idea in the other technigues. Variability of the data
{13:29-30) about the estimated line is measured through use
of the mean absolute deviation (MAD) and mean squared
deviation (MSD). These variability measures plus many other
measures can be used to reflect the accuracy of forecasts
according to Kankey and Thompson (12:1-2). The MAD and the
MSD were used to measure the raw error for each production
run between the actual cost of each lot and the predicted
cost of each lot based on the fitted formula. These measures
were chosen because they are the most often used (12:3-4).

Mean Absolute Deviation. The MAD was computed for

each fitting technique and each production run. Each

individual deviation was computed with the formula:

N
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9
‘ D=Y -Y (17)
t
& where
P, Y = the actual average lot cost
\
g

-~ iy 1
. Y = the average lot cost estimated
»
>h Then the absolute values of the deviations for & production
i
[

: run were summed. Finally, the sum of the absolute deviations
S
A .

o was divided by the number of deviations. The average MAD for
N each of the different fitting technigues was compared for

3 2ach case. Generally, technigues that have a lower MAD for

o
™.

:j the existing data are felt to be more likely tc have lower
)

: absolute deviations when estimating.

'} Mean Squared Deviation. The MSD was computed the
- same as the MAD, except the deviation amounts were sguared

;: before the sum was computed. As with the MAD, the average

A

‘f MSD of each of the different fitting techniques were compared
<

N by case.

. . , :

: Dispersion of Predicted values. The key ingredient in
- fitting learning curve data is o be able to predict future
A
K>

. costs with accuracy. Costs of units 225 and 800 were
~ﬁ predicted from each learning curve formula. The dispersion
2 of the predicted values about the theoretical values was
.’!

,l .

e reviewed for each case.

'

'; Analysis of the Techniques. A comparison of the curve
”} fitting techniques was made in three areas. Dispersion of
1>,

) the statistics, dispersion of the lot plot points from the

K]

L fitted equation, and dispersion of the predicted values about

b
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the population or true value. These comparisons were used to

compare the fitting techniques in each case reviewed.
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ot IV. Findings

L9 L3
i‘. 3]

?ﬁ There were a number of interesting results. First,
>

e scaling of error term distributions was accomplished.

%

L) Second, analysis of the fit provided by each technique was
.7 addressed. Third, the fitting techniques were analyzed for
ﬁ » each case, with emphasis on advantages and disadvantages of
. each.
. \l-l‘
.-

) Error Term Distributions
e,

Az Selection of Scale Values. An early step in the

“ . . . . .

.. simulation of data was to determine the scaling for =ach
-"'.

o error term distribution, i.e. standard deviation for the
h ' normal error term distribution; the scale parameter for the
A
) w . . . . .

" Cauchy error term distribution; and the highest, most likely
LY
- .

“ and lowes+t points for the triangle error term distribution.
5
N . .

:j The 1dea was tc create data with a reasonable amount of
7., deviation, a deviation that was also comparable with
; ::4'

ﬁj deviations in other case

2

)

“» To begin, th2 error term scaling parameters were
;%& selected. The determination of the standard deviation ror
-

Ld ‘

-, . .

N the normal error term distribution was done through an

;)

.

iterative process. The first error level considered was 5%
of the first unit cost. This resulted 1n a standard
deviation of 1250 (252000*.05). This standard deviation would

result in 99.74% (15:517) of all first unit costs falling

ST i T A SRS
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within three standard deviations or between 0.0000128 and
4.88 X 1013 with a mean of 25,000. This amount of deviation
was too extreme, costs would not be expected to vary this
much. The range was computed using the formula:

EXP(Y' + (3 * e)) (18)
where

EXP( ) was defined in formulas (10) and (1l1l)

Y' = 1In (25,000) = 10.12663110

e = 1ln (1,250) = 7.130898830

The second standard deviation considered was 5% of the
first unit cost in logarithmic form. This resulted in a
standard deviation of .506331555 (10.1266311*.05) in
logarithmic form. This standard deviation would again result
in 99.74% (15:517) of all first unit costs falling within
three standard deviations, or between 5,473 and 114,191 with
a mean of 25,000, based on formula (18) with e = .506331555.
The range was also considered too extreme. Cost of the first
unit would not vary this greatly 1n most cases.

The third standard deviation considered was .12 in
logarithmic form. This was selected subjectively based on
reasonable magnitudes and resulted in 99.74% (15:517) of all
flrst unit costs falling within three standard deviations, or
between 17,442 and 35,833 with a mean of 25,000, based on
formula (18) with e = ,12. While this standard deviation
yields a large range, it is acceptable. The range for the
210%" unit was between 3,119 and 6,408 with a mean of 4,470,

This range was also acceptable.
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Nl The triangle distribution is a finite distributiocn,

- Here, the highest point was .36, based on three standard

P deviations of the normal error term distribution used. Since
e the triangle distribution was to be symmetrical, the lowest

: point would be -.36 and the most likely point zero. This

521 distribution resulted in all the first unit costs falling
'\‘
;_‘;S between 17,442 and 35,833 with a mean of 25,000, based on
<

formula (18) with e = ,12.

) % Since the Cauchy distribution has the same attributes as
;Eé the normal distribution but with fatter tails, the same

%& value, .12, was used as the scale parameter for the Cauchy

E; error term distribution. This scale parameter resulted 1in

iff approximately 80% (9:155) of the first unit costs falling

[

within 3.2361 scales, or between 16,955 and 36,863 with a

.&i mean of 25,000, based on formula (18) with (3.2361 * 3)
1y
;:} replacing (3 * e) and e = .12.
t) Cauchy Error Term Distribution Problems. After the
R, scale parameters were selected, some trial simulation runs
'
.
”, . . .
::4 were made. During these simulation runs, the Cauchy error
s
ﬁ' term distribution was noted to cause some very extreme
i& values. Despite the fact that this distribution is similar
o
i} to the normal distribution, it has fatter tails. The Cauchy
fb distribution thus generated some unusual values. On one run,
:ﬁﬁ the unit cost ranged from 4.8 X 10723 for unit 164 to 1.1 X
B 22
:;f 10 for unit 44. Values became 50 extreme that the computer
' 's_",'
[}
s
-J'\
)‘-‘
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could not change the costs from logarithmic form. The
iogarithmic unit costs ranged from -7017.72 to 2778.005.

For the -7017.72 logarithmic value to be changed to a
cost of 5 (logarithmic 1.609437912), the scale factor would
have to be changed to .000117424. This scale factor would
result in 80% (9:158) of the first unit costs falling within
3.2361 scales or between 24,991 and 25,010 with a mean of
25,000, based on formula (18) with (3.2361 * e) replacing (3
* e) and e = .000117424. Thus, to account for the extreme
values possible with a Cauchy error term distribution, the
scale factor would have to be made so small that the majority
of the variation would be removed. lote that the cost of
unit 44 in the previous paragraph is more than trillions of
times greater than the 1987 national debt and that the cost
of unit 164 in the previous paragraph is virtually zero.
Given the above cited problems, the Cauchy distribution was
dropped from this study and should not be used in future
learning curve simulations. Cases V and VI were deleted from
the thesis.

Conclusion. Parameters that reflect comparable
probability bounds for the error term distributions have been
selected. The normal and triangle distributions thus defined

were used in the remainder of this study.

Analysis of Fitting Techniques

All techniques were analyzed based on their ability to

fit and forecast simulated learning curve data. The
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;3 techniques were first reviewed on the fit achieved and,

;% second, on the forecasting performance. The review covered
3, the following cases with the enumerated techniques in the

N

a listed order:

) - Case 1I: equal lot sizes with normal error terms

: -- ordinary least-squares technique

;F -- median slope technique

) -- mean slope technigue

if - Case II: unequal lot sizes with normal error terms
:“ -- ordinary least-sguares technique

. -- weighted least-squares technique

:E' -- median slope technique

- -- mean slope technique

! - Case III: equal lot sizes with triangle error terms
)

- -~ ordinary least-sguares technique

:2 ~-- median slope technigue

_ -- mean slope technigue

13 - Case 1IV: unegqual lot sizes with triangle error terms
;i -- ordinary least-squares technique

e -- weighted least-squares technique

- -- median slope technique

'h

E’ -- mean slope technigue

o

'! Analysis »f Fit. The fit of the techniques 1s analyzed
;; in two areas, the parameters and the dispersion. she

Q parameter estimates for first unit cost, a, and the learning
:' curve coefficient, b, are compared along with the dispersion
g 35
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of the data points around the fitted line. These analyses
are based on 100 production runs that were generated using a
first unit cost, A, of 25000 and a learning curve slope, B,
of -.321928095 (1n(.8)/1ln(2)). These numbers are the
population or true values.

Equal Lot Sizes with Normal Error Terms. Analysis

of the box~-and-whisker plots in Figqure 4 and the data in

Table 2 shows several things. First, note that for the first

Table 2. Estimated First Unit Cost for
Equal Lot Sizes with Normal Error Terms

Population or True First Unit Cost = 25,000

Ordirary Median Mean
Least-Squares Slope Slope
Technigue Technique Technique
Max imum 27,745.3 Maximum  28,434.5 Maximum  31,078.8
95% 26,004.2 95% 27,511.6 95% 29,355.0
75% 25,216.2 5% 25,545.7 75% 26,206.2
Mean 24,465.6 Median  24,864.,3 Mean 25,150.3
Median 24,418.0 Mean 244,791.7 Median 25,017.5
25% 23,791.8 25% 23,569.8 25% 23,810.5
5% 22,917.5 S% 22,467.5 5% 21,977.4
Minimum 21,873.3 Minimum  21,346.4 Minimum  19,529.0
PANGE ¢
Total 5,866.0 7,088.1 11,549.8
T1st-3rd Quartile 1,424.4 1,375.9 2,395.7
BIAS:
Mean -534.4 -208.3 150.3
Median -581.0 -135.7 17.5

unit costs, the ordinary least-squares technique has the
smallest range, followed by the median slcoe technique, with
the mean slope technique having the largest range. Second,

notice the distributions of the statistic about the true
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Figure 4. First Unit Cost Statistics,
Equal Lot Sizes with Normal Error Terms
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h value. Bias can be seen if the average and median statistics

f& are either above or below the population value. It shculd be
S noted that, due to the nature of this research, statistical

G

2

L8 . C o . . .

e tests fot the significance of this bias were not included.

X4

Xa

&

Although these differences in average results from the

“t population or true value are probably not statistically

E significant at a high level of confidence, the word "bias" 1is
o most descriptive. The mean slope technigue has the least

;5 bias, with the average estimate only slightly high. The

;; medlian slope technigue has an average estimated first unit

" cost that is slightly low, while the ordinary least-sgquares
‘2: technigue is siqgnificantly lower.

S

e Similar information about the statistic that estimates

R the learning curve coefficient is shown in Figure 5 and Table
:;f 3. Again note that the ordinary least-squares technique has
.Ez the smallest range, the median slope technique has a slightly
-

larger range and the mean slope technique has the largest

<= (4

range. As with the first unit cost, some techniques appear

v

E§ biased. The distributions for the learning curve coefficient
3ﬁ; show the mean slope technique has the least bias and is most
‘j closely centered to the population value. The median slcpe
35 technique is biased slightly high and the ordinary least-

-

qToK

squares technique is biased significantly higher. The impact

of high bias on tne learning curve coefficient parameter is a
higher learning curve slope, i.e. less learning is estimated

than the population experiences.
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LEARNING CURVE COEFFICIENT, IN HUNDREDTHS
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FITTING TECHNIQUE
Figure 5. Learning Curve Coefficient Statistics,
Equal Lot Sizes with Normal Error Terms
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:::\: Table 3. Estimated Learning Curve Coefficient for
~.;:~. Equal Lot Sizes with Normal Error Terms
’..
M Population or True Coefficient = -.321928095
_-..
::I-:: Ordinary Median Mean
P, Least-Squares Slope Slope
: ."\:; Technique Technique Technique
o Max imum -0.290938 Maximum -0,292049 Maximum -0.272929
‘:) 95% -0.302127 95% ~-0.300358 g5% -0.297986 ‘
_— 75% -0.310133 75% -0.309534 75% -0.310300 \
\_-I'}_ Median -0.315503 Mean ~0.318482 Mean -0.321233 1
i-:.'» Mean -0.315961 Median  -0.318849 Median  -0.321773 |
2-‘. 25% -0.322814 25% -0.32633 25% -0.328686
b N S% -0.329688 5% -0.339246 5% -0.351119
" Minimum -0.344737 Minimum -0.346114 Minimum -0.362477
&
a RANGE ¢
& Total 0.053739 0.054065 0.089548
\ :-) 1st-3rd Quartile 0.012681 0.016797 0.017786
o
® BIAS:
.,.-:.. Mean 0.005967 0.003446 0.000635
:‘. Median 0.006425 0.003079 0.000155
RN
o
A The dispersion of the data points around the learning
. . .
- -, curve line shows (see Table 4) the ordinary least-squares
{-
1
¢ Table 4. Measures of Dispersion for
} Equal Lot Sizes with Normal Error Terms
Al
e
“z-' Ordinary Median Mean
$\: Least-Squares Slope Slope
K :"?_ 1 Technique Technique Technique
“"- AVERAGE OF 100:
MAD B646.7 981.1 1,143.3
-F:‘ msD 102,917.0 330,897.5 525,822.9
o
0 N‘
A jhl .
P technique has the lowest average MAD and average MSD, the
By , .
_\_‘5: median slope technique has the next best average MAD (almost
J
‘b L]
: 52% larger than for ordinary least-squares) and average MSD
"o,
. »
- (more than 221% larger than for ordinary least-squares) and
o
L
o, 40
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L3
o
' the mean slope technique has the greatest amount of
e . | .
- dispersion with an average MAD over 76% greater than for
[ - .
c\ ordinary least-squares and an average MSD almost 411% greater
¥
o
l\i than the average MSD for ordinary least-sguares. The greater
‘ . .
! the MAD, the greater is the dispersion about the learning
L)
- curve line., That 15 to say, the actual points are further
N above and below the fitted learning curve line. A greater
.
M3SD can be influenced by all the data points or can be more
_iﬁ greatly influenced by one data point that is very far frcm
‘O
I;ﬁ the fitted line. These MAD and MSD results are not terrinly
> . . . . !
‘b surprising since ordinary least-squares attempts to best fit ,
. ]
Ly . C .
e the line to minimize squared errors, while the other
A,)‘
i , .
?j techniques do not attempt to best fit.
l- In conclusion, the use of the ordinary least-squares
A\ technique on Case I data resulted in the smallest range and
\Qj
o least dispersion but the most bias in the parameters
e
™~ . , . . . ‘
;) estimated. The combination of a low bilias on the first unit
o cost and a high bias on the learning curve coefficient will
v
}: ylield high predictions of future costs. On the other hang,
,‘n\
¢ . .
‘; the mean slope technigue generally gives the least biased
R . , . 4
" estimates of the first unit cost and the learning curve
‘n'::»
jq coefficient, but has a much greater range and dispersion of
Y]
\ . . .
, values. On average, a less biased prediction of future costs
b
2 will be made by a learning curve line fit with the mean slope
,ﬂ technique. However, because of the larger dispersion, larger
-
= errors could occur with this technigue. The median slope
.
8
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technique balance: the problems of the other two techniques,
a smaller range of possible first unit costs and learning
curve coefficients than the mean slope technique with less
bias than the ordinary least-squares technique.

The next three sections analyze the fitting techniqgue
results for the remaining three cases. The casual reader may
wish to sXip to the analysis of cost predictions (page 54) to

3e2 how £h

8]

technigques predicted future costs 1in each cacse.
Turn to Chapter S5 for a summary of findings for all cases.

Unequal Lot Sizes with Normal Error Terms.

Analysis of the data through use of box-and-whisker plots
(plots not shown, see data in Table 5) shows that the
weighted least-squares technique has the smallest range for
the filrst unit costs. The mean slope technigue has the next
largest range followed by the median slope technique. The
ordlinary least-sguares technique has the largest range. In
terms of bias, the techniques that were used on the eqgual lot
ci1ze data reversed thelir order with the unequal lot size
data. The ordinary least-squares technique now has the least
bias, while the median slope technique has almost twice that
amount. The mean slope technique has slightly more high biasg
than the median slope technigque and the weighted least-
squares technique has the largest high bias, about three
times that of ordinary least-squares. All technigues gave
high estimates for the first unit cost, i.e. they were all

biased high. The impact of this high bias results in an
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~. Table 5. Estimated First Unit Cost for
. Unequal Lot Sizes with Normal Error Terms

W,
e
. Population or True First Unit Cost = 25,000
38 . ' |
o Ordinary Median Mean Weighted |
_~:': Least-Squares Slope Slope Least-Squares :
:;\:- Technique Technique Technigue Technique i
T Max imum 29,168.4 Maximum  28,824.8 Maximum  29,000.0 Maximum  28,825.9 i
\ g5% 28,172.1 95% 27,776.9 95% 28,380.4 95% 27,900.6 !
¥ 75% 26,633.6 75% 26,512.7 75% 26,541.,0 75% 26,680.3 1
b ...’: Median 25,317.8 Mean 25,472.2 Median 25,577.9 Median 25,856.7 ‘
}‘t-. Mean 25,222.0 Median 25,432.9 Mean 25,512.0 Mean 25,787.9
; .-:: 25% 24,046.3 25% 24,568.9 25% 24,512.9 25% 24,330.0
i!. 5% 21,796.7 5% 22,628.7 5% 22,934.7 5% 23,700.2
‘ Minimum 20,991.0 Minimum  21,235.0 Minimum  22,075.6 Minimum  22,122.0
e
:.‘,: RANGE ¢
'-:.*. Total 8,177.4 7,589.8 6,924.4 6,703.9
XN 1st-3rd
rhi,‘: Quartile 2,587.3 1,943.8 2,028.1 1,750.3

®
' .‘t BIAS:
. Mean 222.0 472.2 512.0 787.9
o8 Median 317.8 432.9 577.9 856.7
o
\ “-{
4 -
{
.- expected first unit cost estimate greater than the population
o value.
>
\:_'

The distributions of the learning curve coefficients

U

~

from the box-and-whisper plots (plots not shown, see data in

* 2
e
I ai ]

oo

ks .

. Table 6) show that the mean slope technique has the smallest
", s

ol range followed very closely by the weighted least-squares \
L

ﬂﬁj technique. The median slope technique has a 15% range

c;} increase and the ordinary least-squares technique has over a
Wk

L, . . . .

A 30% increase. The mean and median biases are split for the
".y' |
;{i ordinary least-squares technique, and the values are very
,j; small. The median slope technique has low bias, three times
‘o

oy greater than the low rating of ordinary least-squares. The
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"",'1‘. Table 6. Estimated Learning Curve Coefficient for

3. Unequal Lot Sizes with Normal Error Terms

f't.:!-

. Population or True Coefficient = -.321928085

-

: -\“ Ordinary Median Mean Weighted
’. Least-Squares Slope Slope Least-Squares
Lo Technique Technique Technique Technique
A _ Max imum -0.279564 Maximum -0.287639 Maximum -0.296019 Maximum -0.293522
! 95% -0.286794 95%¢  -0.300991 95%  -0.305463 9s%  -0.307811
y o 75% -0.310914 75% -0.317822 75% -0.317098 75% -0,.320222
.;‘:'.1 Mean -0.321115 Mean -0.324675 Mean -0.325050 Median -0.326632
'{',." Median -0.323132 Median  -0.325780 Median  -0.325549 Mean -0.326685
! :‘:‘: 25% -0.334554 25% ~-0.333160 25% -0.333512 25% -0,335174
("' » 5% -0.346421 5% -0.340082 5% -0.342080 5% -0,344562

Minimum -0.353979 Minimum -0.353451 Minimum -0.353137 Minimum -0.350645 ‘

v ey 1
N RANGE : 1
- Total 0.074415 0.065812 0.057118 0.057123
.:f 1st-3rd

-; Quartile 0.023640 0.015338 0.016414 0.014852
o BIAS:

o Mean 0.000813 -0.002747 -0.003122 -0.004757
vr:- Median -0.001204 -0.003852 -0.003621 -0.004704
P

¢'
i . .

mean slope technique has approximately the same overall low
e
5-\.{. bias as the median slope technique while the weighted least-
o

) squares technique has the largest low bias, almost 45% more
' ‘e than for median slope. The result of low bias fr the

s .

:‘_-‘,: learning curve coefficient is a lower learning curve slope,
.':‘r

il that is the estimated decrease in cost more than the

. 3 .

::-gj population experiences.

-

q.". . . 3
; The dispersion of the data points (see Table 7) around
b “i‘:“

;‘,-.: the fitted learning curve line shows the ordinary least-
- @ e

v squares technique has the lowest average MAD and average MSD.
A—\I

s ' _

The median slope, weighted least-squares and mean slope

-\.

o techniques have average MADs within 60% of ordinary least-

| -' F" : N
s
AL Ty T




L 8 L..

o] l,l;"l

I

N,
’l’.'

-
A
D R

T
N

[

i

)

n..a' 'i
& t‘"‘

T

L:.: . [ 4

&4

LSS
‘I

l.l

Jr'l

v

eyl

LA Gy S RN

Y W A

-

"-.'<
sx;ﬂ¢§5ﬁ.‘

A Y
»

-
X

-y

Table 7. Measures of Oispersion for
Unequal Lot Sizes with Normal Error Terms

Ordinary Median Mean Weighted
Least-Squares Slope Slope Least-5quares
Technique Technique Technique Technique
AVERAGE OF 100:
MAD 1,392.4 2,035.8 2,150.8 2,067.6
Mmso 710,770.0 2,792,609.0 2,689,005.0 3,540,134.0

squares. The median slope and mean slope techniques have
average MSDs over 350% greater while the weighted least-
squares technique has the highest average MSD, almost five
times that of ordinary least-squares. This is unexpected
since weighted least-squares should better fit the data when
the data has unequal weights. Resolution of this may require
that the errors by lot be weighted by lot size.

In conclusion, the use of weighted least-squares on Case
II data resulted in the overall least range but the most bias
in the parameters estimated and the highest overall
dispersion. This yielded a combination of high bias on the
first unit cost and low bias on the learning curve
coefficient which should on average result in low predictions
of future costs. The ordinary least-squares technique has
the least bias and smallest dispersion but the widest range.
Tnis resulted in a combination of high bias on the first unit
cost and a split, or almost no low, bias on the learning
curve coefficient yielding high predictions of future costs
that will become low predictions after many, many units.

Both the median slope and the mean slope techniques have more
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bias than the ordinary least-squares technique and greater
ranges over the first unit cost and learning curve
coefficient than the weighted least-squares technique.

Equal Lot Sizes with Triangle Error Terms.

Analysis of the box-and-whisker plots (plots not shown, see

Table 8 for data) shows that the ordinary least-squares

Table 8., Estimated First Unit Cost for
Equal Lot Sizes with Triangle Error Terms

Population or True First Unit Cost = 25,000

Ordinary Median Mean

Least-Squares Slope Slope
Technique Technique Technique
Max imum 27,943.2 Maximum  29,210.4 Maximum  31,814.6
95% 27,013.9 95% 27,783.4 95% 29,505.2
75% 25,2688.1 75% 26,055.2 75% 26,503.5
Mean 24,599.4 Mean 24,844 .4 Mean 25,136.7
Median 24,489.9 Median 24,727.2 Median 24,994.65
25% 23,985.1 25% 23,784.0 25% 23,411.4
5% 22,630.1 5% 22,196.5 5% 21,278.9

Minimum 20,996.2 Minimum  21,321.9 Minimum  20,134.3

RANGE ¢
Total 6,3947.0 7,888.5 11,680.3
1st-3rd Quartile 1,303.0 2,271.2 3,092.1
BIAS:
Mean -400.6 -155.6 136.7
Median -510.1 -272.8 -5.4

technique has the lowest range for the first unit cost. The
median slope technique increases the range by almost 14%
while the mean slope technique has the largest range, over
66¢ greater than the range of ordinary least-squares. The
mean slope technique is almost centered with a very small

high bias, the median slope technique has low bias and the
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‘ﬁ ordinary least-squares technique has the most low bias, about
:y twice the bias of the median slope technique. The impact of
Tv . high bias is a higher first unit cost than the population

‘3 value while the impact of low bias is a lower first unit cost

¥ than the population value. A wider range of first unit costs
increases the probability of getting a first unit cost
significantly different than the population value.

The distributions of the learning curve coefficients

based on an analysis of the box-and-whisker plots (plots not

“an -

shown, see data in Table 9) show that the ordinary least-

R
By . .
: squares technique has the smallest range. The median slope
technique has a range over 12% larger and the mean slope
W]
" Table 9. Estimated Learning Curve Coefficient for
. Equal Lot Sizes with Triangle Error Terms
LN
R/
) Population or True Coefficient = -,321928095
. Ordinary Median Mean
3 Least-Squares Slope Slope
Technique Technique Technigue
o Max imum ~-0.285139 Maximum -0.281546 Maximum -0.274801
Y 95% -0.299257 95% -0,297417 95% -0.288618
Y 75% -0.308678 75% -0.308188 75% -0.307904
¥ Mean -0.316054 Median ~-0.318006 Median  -0.319835
i Median -0.316175 Mean -0.318215 Mean -0.320172
Q‘ 25% -0.321786 25% -0.329008 25% -0.334362
| S% -0.334803 5% -0.338870 5% -0.354159
Minimum -0.344565 Minimum -0.348343 Minimum -0.359162
b RANGE ¢
> Total 0.059426 0.066797 0.084361
1‘ 1st-3rd Quartile 0.013108 0.020820 0.026458
BIAS:
ol Mean 0.005874 0.003713 0.001756
¥ Median 0.005753 0.003922 0.0013893
’d
‘I
K
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technique has the largest range, nearly 42% greater than the

range of ordinary least-squares. The mean slope technique
has the smallest bias, slightly high. The median slope
technique has about twice the bias and the ordinary least-
squares technique has nearly triple the bias of the mean
slope technique. The result of high bias for the learning
curve coefficient is a higher learning curve slope and a
lower rate of learning than with the population value. As
with the first unit cost range, the wider the range the more
often there will be a larger difference between the fitted
value and the true value.

The dispersion of the data points around the fitted

learning curve line (see data in Table 10) shows the ordinary

Table 10. Measures of Dispersion for
Equal Lot Sizes with Triangle Error Terms

Ordinary Median Mean
Least-Squares Slope Slope
Technique Technique Technique

- AVERAGE OF 100:
o MmAD 847.9 1,255.3 1,468.5
- mso 162,314.7 521,723.4 827,811.2
S
e
Cral
[ ]
A least-squares technique has the lowest average MAD and
A
oo : : .
AN average MSD. The median slope technique has an increase of
i |

N 48% for the average MAD and the mean slope technique has the
@

f‘ highest MAD, over 73% higher than for ordinary least-squares.
.

o’
-§\ The median slope technique has an increase of over 221% for
Y

5

LY

the average MSD and the mean slope technique has the highest
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average i1SD, about 410% higrer than the MSD of ordinary
least-sguares. As the average MAD increases, the data points
are further from the fitted line. As the MSD increases, the
data points are further from the fitted line, and more
irportance is place on data points that are far from the
fitted line. Note that even when the type of error term
changes, ordinary least-squares still fits the data with the
smallest error.

In conclusion, the use of the orcdinary least-sguares
technigue on Case III data resulted in the smallest range and
least dispersion but the most bias in the parameters
estimated. The combination of low bias on the first unit
cost and high bias on the learning curve coefficient will
result 1n high predictions of future costs. On the other
hand, the mean slope technique gives generally less biased
estimates of the first unit cost and learning curve
coefficients, but a much greater range and dispersion of
values. The median slope technigue has more blas than the
mean slope technique and has greater range than the ordinary
least-sgquares technigue. As stated before, the result of low
blias on the first unit cost and high bias on the learning
curve coefficient is high predictions of future costs over
the population. This bias is greatest with the ordinary
least-sgquares technique. On average, the better predictions
of future costs will be made by the mean slope technique,

However, the higher dispersion and larger range allows more
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opportunity for the estimates to be significantly different

than the population values.

Unequal Lot Sizes with Triangle Error Terms.

Analysis of the box-and-whisker plots (plots not shown, see

data in Table 11) shows the weighted least-squares technique

Table 11. Estimated First Unit Cost for
Unequal Lot Sizes with Triangle Error Terms

Population or True First Unit Cost = 25,000

Ordinary Median Mean Weighted
Least-Squares Slope Slope Least-Squares

Technique Technique Technique Technique

fia x imum 29,486.0 Maximum  29,996.0 Maximum  29,182.7 Maximum  29,287.6

35% 28,838.0 95% 28,852.6 95% 28,446,.8 95% 28,419.4

75% 27,035.4 75% 27,137.3 75% 26,944.3 75% 26,801.5

Mean 25,343.4 Mean 25,568.3 Mean 25,538.3 Mean 25,812.3

Median 25,159.6 Median 25,504.3 Median 25,391.5 Median 25,687.0

25% 23,677.8 25% 24,161.3 25% 24,250.3 25% 24,752.3

5% 22,263.3 5% 22,258.,6 5% 22,986.5 5% 23,552.6

Minimum 20,425.3 Minimum  19,949,7 Minimum  20,759.7 Minimum  21,793.3
RANGE ¢

Total 3,060.7 10,046.3 8,423.0 7,494,3

1st-3rd

Quartile 3,357.6 2,978.0 2,694.0 2,049.2
BIAS:

Mean 343.4 568.3 538.3 812.3

Median 159.6 5064.3 391.5 687.0

has the smallest range for the first unit cost. The mean
slope technique increases the range over 12% and the
ordinary least-squares technique increases the range over
20%. The median slope technique has the largest range, over
3J4% greater than the smallest range. The ordinary least-

squares technique has the least bias, with the average
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estimated first unit cost somewhat above the population
value. The mean slope technique has higher bias, about
double, and the median slope technique has even higher bias,
a little more than double. The weighted least squares
technique has the largest high bias, about three times
greater than for ordinary least-squares. The result of high
bias is higher first unit costs than the population value.
The dispersions of the learning curve coefficients from
the box-and-whisker plots (plots not shown, see data in Table
12) show that the weighted least-squares technique has the
lowest range., The mean slope technique has a higher range

while the median slope technique has the next to the largest

Table 12. Estimated Learning Curve Coefficient for
Unequal Lot Sizes with Triangle Error Terms

Population or True Coefficient = -.321928095

Ordinary Median Mean Weighted |
Least-Squares Slope Slope Least-Squares ;
Technique Technique Technigue Technique 1
Maximum -0.277082 Maximum -0.277520 Maximum -0.286385 Maximum -0.292247 :
95% -0.292436 a5% -0,298026 95% -0.304547 95% -0.305733
75% -0.307230 75% -0,313693 75% -0.315566 75% -0.316435
Mean -0.321065 Mean -0.324275 Median  -0.3233399 Median  -0.324918
Median -0.321460 Median  -0.324411 Mean -0.324171 Mean -0.325823 ?
25% -0.336550 25% -0.335525 25% -0.334843 25% -0.336008 ‘
5% -0.349381 5% -0.348340 5% -0.345254 5% ~-0.347735 |

Minimum -0.356997 Minimum -0,353926 Minimum -0.354738 Minimum -0.352516

RANGE ¢
Total 0.079915 0.076406 0.067753 0.060269
1st-3rd
Quartile 0.,029320 0.021832 0.019277 0.019573
BIAS:
Mean 0.000963 -0.002347 -0.002243 -0.003895
Median 0.000468 -0.002483 -0.001471 -0.002930
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range. The ordinary least-squares technique has the highest

range, about 32.6% greater than for weighted least~-sguares.
However, the ordinary least-squares technique has the least
bias, with the average estimated learning curve coefficient
only slightly above the population or true value. The other
techniques are biased low, or below the population value.

The mean slope technique has the smallest low bias, about
tiiree times that of ordinary least-squares. The median sloge
technique has essentially the same low bias as the mean zlope
technigue and the weighted least-squares technigue has the
most low bias, about six times that of ordinary least-
squares. The result of low bias on the learning curve
coefficient is a lower learning curve slope than for the
population, the estimated decrease in costs is thus more than
the population experiences. The result of high bias on the
learning curve coefficient is a higher learning curve slope
than that of the population, the estimated decrease in costs
is less than the population experiences.

The dispersion of the data points around the fitted
learning curve line shows {(see Table 13) the ordinary least-
squares technique fits best on average using MAD and MSD.

The median slope technigue has an average MAD increase over
43%, the weighted least-squares technique has an average MAD
increase of almost 49% and the mean slope technigue has the
highest MAD, an average MAD increase over 56% that of

ordinary least-squares. The mean slope technique has an
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Table 13. Measures of Dispersion for
Unequal Lot Sizes with Triangle Error Terms

Ordinary Median Mean Weighted
Least-Squares Slope Slope Least-Squares
Technique Technique Technique Technique
AVERAGE OF 100:
MAD 1,571.1 2,252.2 2,454.1 2,336.2
msD 816,844.6 3,125,297.0 3,085,647.0 4,163,786.0

average MSD almost 278% higher, the median slope technique
has an average MSD nearly 283% higher and the weighted least-
squares technique has the highest average MSD, nearly 410%
higher than for ordinary least-squares. When comparing
increases, the larger increase of the average MAD of the mean
slope technique versus the lower increase of the average MSD
shows that the data points are all equally dispersed, with
fewer outlying points. The greater the dispersion of data
points around the fitted learning curve line, the greater the
possibility of the future costs of units being far from the
fitted line value,

In conclusion, the use of the weighted least-squares
technique on Case IV data gives the smallest range and the
second smallest dispersion but the most bias in the
parameters estimated. This technique yielded a combination
of high bias on the first unit cost and low bias on the
learning curve coefficient which would result in low
predictions of future costs. The ordinary least-squares
technique generally gives the least biased estimates of the

first unit cost and the learning curve coefficient and the
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- least dispersion, but a much larger range of parameter
D .
A
&N values. This situation yielded a combination of high bias on
e the first unit cost and high bias on the learning curve
L
:\5 coefficient which results in high predictions of futurec
N
B . .
. costs. The median slope and mean slope techniques have more
i
bias than the ordinary least-squares technique, wider ranges
: than the weighted least-squares technique and more dicgersion
A than both the least-sguares techniques. The pradictions from
-5 the median slope and mean slope techniques are in between the
W
= welghted and ordinary least-squares technigues results.
b
~. Analysis of Cost Predictions. The various learning
:: curve fitting techniques wer2 compared to see how each
\‘
I technique predicted future costs. The data used to do these
"
R comparison3 were the predictions from the 100 production
i
C*k rins. These predictions were also compared to the population
Y, . . .
S or true future unit cost. No error term was included in
oy
:3 these true future costs since the true cost is known.
;' Independence of the error terms assures that the comparizon
s
o*n of predictions to the true population value is sufficient.
‘- The cases are discussed in the same order as in the pgrior
A section.
.'~}
}: Egqual Lot Sizes with Normal Error Terms. Analysis
)
2 of predicted future ccsts was done on the predictions of
R~ costs for unit 225 and unit 800.
b .
\"s . . -
S The analysis showed that the average predicted costs of
M2
-f' . . -
3 unit 225 (see Table 14.) are above the population cost for
'- :
S
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O
o 54
o
W,
[ ]
»,
e
Y. . 4
O s U o A AT D T8 L S o o a T A AT A LA AT N A FIRIIRY
N Y L P A A o W N R, W Wy Yo A TR RN OR
bt L ¥ -.'-.. .;Q-lo.t l.aio“a‘ . ’~~ (X ’ L l'.n X X 5> N * < .n ("' . 0" A PP TSN G.




~
N
'l
Lt
150
S5
i \yﬁ'\
~ > .
::? Table 14. Predicted Cost of Unit 225 for
o Equal Lot Data with Normal Error Terms
0
A Mean
SO Prediction Range
q:{ Ordinary Least-Squares 4415.10 343.34
AN Median Slope 4410.88 570.24
i%x Mean Slope 4401.54 578.50
) : R
s Population Cost 1372.296
&
B Fh “
o
‘e
S all technigues, but less than 1% above. The mean slope
B P
- e technigque's average predictlion is ciocsest -¢ th poputaticn
o cost. The median slope technigjue's average prediction .5 3 ‘
Sy
[ iittle higher than the predictiorn from the mean zlope
[
o] tecanigue. The ordinary least-sguares technijue's averije
N
E prediction 1s the highest and furthest from the gopulation
M*; cost. Cn the other hand, the ordinary lszast-sguares
M N
£
4 . . . L
o technique has the smallest range of predictions, the median
s
O slope technigue has a range of predictions over 66% larger
3
’{3 and tne mean slope technigue has the largest range of

predictions (over 68% above the ordinary least-s3juares

;5' rangej .
o
“.‘ The analysis of the costs of unit 800 (see Table 15.)
:} Table 15. Predicted Cost of Unit 3800 for
> Equal Lot Data with Normal Crror Terms
-.Jf
" [
.'1 ean
A Prediction Range
3 Ordinary Least-Squares 2958.32 400.30
. Median Slope 2945.48 465.18
- Mean Slope 2929.32 503.24
L™ "
*,
5y Population Cost 2906.39
l-‘,
I
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' shows that the average predicted costs were within 2% above

4 L

the population cost of unit 800 for all technigues. The mean
slope technique's average prediction 1s closest to the

population cost, about .79% higher. The median slope

0 2 e e 4

technique's average prediction is the next higher, about

1.34% greater than the population cost. The ordinary least-
squares technique's average prediction is the highest, almost
1.79% above the pogulation cost. ©On the other hand, the

ordinary least-squares technique again has the smallest range

of predicted cost, the median slope technigue has a range

mis st e s X

over 16% higher and the mean slope techniques has the highest

-

range, almost 25% higner.

The predictions cf future costs for units 225 and 800 in
(‘ Case 1 are consistent with the prior analysis of the fit of
the three techniques. The ordinary least-sgquares
technigque's average predict:icn of cost 1s getting further
from the population cost at a faster rate than for the median
and mean slope technigue. The ranges of the predicted values

fcr the different technigues more 3imilar.

etV el

R

Unegual Lot Sizes with Mormal Zrror Terms.

Y

Analysis of predicted future costs was done on the

[
LI B

predictions of costs for unit 225 and unit 800.

q The analysis shows that the average predicted costs of
unit 225 (see Table 16.) are above the population cost for
all techniques, but less than 1.1% above. The mean slope

techinique's average prediction is closest to the population
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Y
X
’;"'
3O
'2
W Table 16. Predicted Cost of Unit 225 for
u& Unegual Lot Data with Normal Error Terms
',
. Mean
Y Prediction Range
Y Ordinary Least-Sguares 4419.45 399.10
o Median Slope 4382.93 591.42
b, S lean Slope 4330.43 432.00
N Welghted Least-Squares 4390.09 304.74
4iﬁ Population Cost 4372.26
o
N
;.
- cost while the median slope technique's average gzredicticn is
K ﬁ a little nignher. The weighted least-sgquares technigque's
+
O . . . .
i§£ average prediction is more than double the bias of the mean
D W
'. slope technigue's prediction. On the other hand, the
y% ordinary least-squares technigue predicted a mean cost that
LAY
Uﬁ was the highest and furthest from the population cost, almost
O
N
{ - six times the bias of the mean slope technique. The weighted
7
:4% least-squares technigque has the smallest range of
3
LS, . . .
¢$j predictions, the mean slope technique has a range over 58%
‘o
LY
\ larger, the ordinary lzast-sguares technique has a range 64%
Y
*b larger and the median slope technique has the largest range,
AN
L)
A LR
:x: over 94% larger than the range of weighted least-sguares.
15l
¥ ) .
® The analysis of the costs of unit 800 (see Table 17.)
¥
jiﬁ shows that the average predicted costs are within 1.3% above
u
“n)} . . .
i and .2% below the population cost of unit 800. The median
"
1,
i . . . .
- @ slope technique's average prediction is closest to the
;r: population cost, about .07% lower. The weighted least-
‘2]
;;‘ squares technique's average prediction is the next lower,
&
2 more than double the median slope difference. The mean slope
o
x‘
o 57
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Table 17. Predicted Cost of Unit 800 for
Unequal Lot Data with Normal Error Terms

Mean
Prediction Range
Ordinary Least-Sguares 2942.63 607.59
Median Slope 2904.16 517.34
lean Slope 2900.89 427.3
Weighted Least-Squares 2901.38 38C. 42
Population Cost 2906.39

technique's average prediction is lowest, just .19% below che

n

nopulation cost. The ordinary least-sguares technigue'
average prediction is above the population value, over 1.24%

higher. On the other hand, the weighted least-sguares

3

technique has the smallest range of predicted cost, the mea
slope technigue has a range over 12% higher, the median cloge
technique has a range about 36% higher and tne ordinary
least-sguares technigue has a range almost 60% higher than
the range of the weighted least-squares technigue.

The predictions of future costs for units 225 and 320 in
Case II1 are consistent with the prior analysis of the fi1t cf
the four techniques. Because of the combinations of bias,
range and distribution, the prior ranking of technigues is
not followed. These combinations result in the best

prediction from a technique that has mid-level ratings for

bias, range and dispersion. The weighted least-sguares

.)

k. technique, which had the most bias and smaller ranges did not
: have the highest predictions. The median slope, weighted

'

b least-squares and mean slope techniques went from predicting
>

.
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s aobove the population to predicting costs below the population

)

! : , .

. cost. These techniques willl predict costs further below the

‘- population for units greater than unit 800. The ordinary

e

= least-sguares technligue has mean predicted costs that are

T increasingly above the population value as the unit number

i; gets larger.

D) . . .

' Equal Lot Sizes with Triangle Error Terms.

by
Analysis of predicted future costs was done on the

;ﬁ sredictions of costis for unit 225 and unit 800.

1 . . . 5

:§ The analysls shows that the average predicted costs of

(X .

. unit 225 (see Table 18.) are above the population cost for

-

-*;

wl

i Table 18. Predicted Cost of Unit 225 for

;n Equal Lot Data with Triangle Error Terms

.

T Mean

o Prediction Range

-2 Crdinary Least-Sjuares 4436.37 345.49

", Median Slope 4425.54 564.68
Mean Slope 4418.77 588.27

F{ Populaticon Cost 4372.26

ol

o

V. a1l technigues, but less than 1.5% above. The mean -~ lope

N technique's average prediction 1s closest to the population

..'\

- coct., The median slope technigue's average prediction is a

’1

.:: i1ttle higher than for the mean slope technique. The

0

>, ordinary least-syuares technigue's average prediction is

l;; highest and furthest from the population cost, almost 1.5%

)

ij apove the population cost. On the other hand, the ordinary

o least-squares technique has the smallest range of

-

"l
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X
3ﬂ predictions, the median slope technique has a range over 63%
”Q higher and the mean slope technique has the largest range of
f ﬁ predicted costs, over 70% above ordinary least-squares.
’&f The analysis of the costs of unit 800 (see Table 19.)
\
W%
i‘ »
..q Table 19. Predicted Cost of Unit 800 for
) Equal Lot Data with Triangle Error Terms
"..l
Pl
Mean
200 Prediction Range
2N Ordinary Least-Squares 2071.77 374.7
f}: Median Slope 2956.74 527.84 ;
SN Mean Slope 2945.43 608.65 i
Y
Yy ,
Y Population Cost 2906.39
) ,.::
I%ﬁ shows that the average predicted costs are within 2.3% above
e
; the population cost of unit 800 for all techniques. The mean
,23 slope technique's average prediction is closest to the
]
» : nopulation cost, over 1.3% greater. The median slope
DU
) technigue's average prediction is higher, over 1.7% greater
1)
h_ than the population cost. The ordinary least-squares
;_i technique's average prediction is the highest, over 2.2%
o
i /
® above the population cost. On the other hand, the ordinary
K,
oy least-squares technique has the smallest range of predicted
[ L
’%? cost, the median slope technique has a range over 43% higher
Wi
i'h
@2 and the mean slope technique has the largest range, over 62%
o
:} higher than the rarqje of ordinary least-squares.
o
L}
ﬂb The predictions of future costs for unit 225 and 800 in
*l
)& Case I1I are consistent with the prior analysis of the fit of
&
-
(¥
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the three techniques. The ordinary least-squares technigue
mean predicted cost 1s getting further from the population
cost at a faster rate than for the median and mean slope
technigue. The ranges of the predicted values for the
different techniques are converging.

Unequal Lot Sizes with Triangle Error Terms.

Analysis of predicted future costs was done on the
predictions of costs for unit 225 and unit 800.
The analysis shows that the average predicted costs of

unit 225 (see Table 20.) are above the population cost for

Table 2C. Predicted Cost of Unit 225 for
Unegual Lot Data with Triangle Error Terms

Mean
Prediction Range
Ordinary Least-Squares 4439.13 143.57
Median Slope 4403.83 721.50
Mean Slope 4403.71 655.01
Weighted Least-Squares 4413.3 324.383
Pogsulation Cost 4372.26

all technigues, but less than 1.6% above. The mean sloge
technigue's average prediction is closest to the population
cost. The median slope technique's average prediction is
slightly higher while the weighted least-squares technigue's
average prediction is a little above the prediction from the
mean slope technigue. On the other hand, the ordinary least-
squares technique has a mean predicted cost that is the

highest and furthest from the population cost, almost double

O 0




s" '.':
i
)
a'ﬂ" . ) .
mb- the mean slope deviation. The weighted least-squares
[}
s ..|
s technique has the smallest range of predictions, the ordinary
(]
*{ﬂj least-squares has a range over 37% higher, the mean slope
Lkl
1}5 technigue has a range almost 102% higher and the median slope !
4 -': }
f3 technique has the highest range, over 122% above that of
zgg": .
D weighted least-squares.
%
) .
?ﬂ The analysis of the costs of unit 800 (see Tatle 21.)
D
W Table 21. Predicted Cost of Unit 300 for
3:5 Unequal Lot Data with Triangle Error Terms
v
1.. Y
.‘A\ Mean
i Prediction Range
< Crdinary Least-Sguares 2856.15 584.32
N Median Slope 2919.72 042.79
~tﬁ Mean Slope 2919.60 530.64
ﬁi Weighted Least-Squares 2920.19 398.58
e
e Population Cost 2906.39
v. R
i
ol
O
QAH shows that the average predicted costs are within 1.8% above
)
¥
%3 the population cost of unit 300 for all technigues. The mean
o' , L .
ﬂ,f slope technique's average prediction is closest to the
A”"..
A;} population cost, over .45% higher. The mean slope
>
°‘ technigue's average prediction is slightly higher while the
t? weighted least-sguares technigue's average prediction is the
‘;f next higher, over .47% above the population cost. The
R
008
:: ordinary least-squares technique's average prediction is the
2;&; highest above the population cost, over 1.71% higher. On the
‘»,'..
v other hand, the weighted least-squares technique has the
L2
}
4 smallest range of predicted cost, the mean slope technique
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has a range about 33% higher, the ordinary least-sguares
technique has a range over 46% higher and the median cloge
technique has the largest range, over %1% higher than the
range of weighted least-sguares. ,
The predictions of future costs for units 225 and 803 in
Case IV are consistent with the prior analysis of the fit of !
the four :“echniques. However, as with predictions in Case
II, the data follows the general fit but the rank order 1is
not based on the rank of the biases and ranges. The best
pradictions were from a technigue with mid-level bias, range
and dispersion ratings. The median slope, weighted least-
squares and mean slope technigues are going from predicting
above the population to predicting costs below the population
cost. These techniques will go below and get further below
the population cost for predictions of costs beyond unit 800.
The ordinary least-sgquares technigue predicts costs that are
getting more abkove the population value and the predicted
costs will be further above the population value for units

beyond 800.
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V. Conclusions and Recommendations

Conclusions

The analysis of the fitting techniques for the four
cases yields no clear cut best technique. There is no best
technique overall and no best technique in any of the four
cases reviewed. As shown in Tables 22 and 23, there are
tradecffs for each situation.

As can be seen 1in Table 22, when data is from Case I,
equal lot sizes with normal error terms, the ordinary least-
squares technigque has the most bias but the smallest range
while the mean slope technigue has the least bias but the
largest range. The choice of a technique for prediction must
recognize these tradeoffs. The mean slope technigue, on
average, will provide a better estimate of future costs but

q

with a greater chance of larger deviations. ©On the cther
nand, the ordinary least-squares technique will provide less
chance of large deviations but predictions will be higher
than population values on average.

AS can be seen in Table 22, when data is from Case II,
anegual lot sizes with normal error terms, the situation is
more complex. The weighted least-squares technigque has the
most biased estimates, yet the tightest ranges, for the
parameters; it also has the tightest prediction ranges and

good average predictions. The average prediction gets better

in comparison to the other techniques when the unit to be
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predicted is further from the data. For units close to the
data the average mean slope and median slope technigue
predictions were closest to the population or true cost. A3
the unit being predicted gets further from the data, the
median slope technique has the best average prediction.
These three techniques go from predicting above the
population cost to predicting below the population cost as
the unit being predicted is further from the data. The
ordinary least-squares technique has the highest average
prediction when close to the data and average predictions
from this technique get higher above the population cost when
the unit being predicted i1s further from the data. The
choice of a technique for future predictions should recognize
these tradeoffs. The mean slope technigue, on average, will
provide a less biased prediction of future costs close tc the
data but with a greater chance of larger deviations. The
median slope technique, on average, will provide a less
biased prediction of future costs but with the greatest
chance of larger deviations, when units are close to the
data. These techniques have average predictions that 5o from
above to below the population cost. On the other hand, the
weighted least-squares technigue will provide less chance of
larger deviations but the predictions will be a little
further from the population values on average.

As can be seen in Table 23, when data is from Case III,

equal lot sizes with *riangle error terms, the ordinary
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least-squares technique has the most bias, tightest ranges
and least dispersion. This yielded the tightest ranges and
the most biased average predictions. The mean slope
technique has the least bias, widest ranges and most
dispersion. This yielded the widest range and the least
biased average predictions. The median slope technigue was
between the other two techniques. The choice of a technigue
to base future predictions on must recognize these protlems.
The mean slope technique, on average, will provide a better
estimate of future costs but with a greater chance of large
deviations. On the other hand, the ordinary least-squares
technigue will provide less chance of large deviations but
the predictions will be higher than population values on
average.

As can be seen in Table 22, when data is from Case 1V,
equal lot sizes with triangle error terms, the situation is
again more complex. The weighted least-squares technigque has
the tightest ranges, the mos: biased estimates of the
parameters and ciose to the most dispersion, or worst fit.
However, weighted least-squares has the tightest prediction
ranges and good average predictions. The average prediction
gets closer toc the population cost as the unit being
predicted is further from the data. The average predictions
were cClosest to the population cost for the mean slope and

the median slope techniques. These three techniques are

predicting average costs closer to the population cost as the




unit is further from the data. These average costs will go
below the population cecst somewhere beyond unit 830. The
ordinary least-squares technique has the highest average
prediction when close to the data. Average predictions from
this technigque get higher above the population cost with
larger unit numbers. The choice of a technique nust
recognize these tradeoffs. The mean slope and the median
slope technigues, on average, will provide good predicrtions

of future costs but each technigque has a greater chance of

[
oD

di

(9]
T

larger deviations. These technigues have average ions

e

O

ost na

0

)]
3

that go from above to closer abkove the population
will go below the population costs somewhere peyond unit 20C.
On the other hand, the weighted least-squares technigque will
provide less chance of larger deviations but the predictions
will be a little further from the population values on
average.

At this point, the analyst faced with a learning curve
problem should feel comfortable that either the ordinary
least-sguares or the weighted least-squares technigue can
provide reasonably good estimates of the learning curve
ecuation parameters (A and B). A qulck look at the relative ‘
significance 1indlcates that the bias 1n the estimate of the
first unit cost (A) is more significant than the bias in the
estimate of the learning curve coefficient (B). The mean
slope and the median slope techniques offer promise of less

bias of the first unit cost and learning curve coefficient

69




estimates, at the expense of increased dispersion in the

estimates. Since the mean slope and median slope fitting
techniques are not included in any learning curve programs
currently available to the analysts, the application of these
techniques must be postponed.

In summary, when data 1s in the most common form, that
of unegual lot sizes, the weighted least-squares technigue
does provide good predictions with a tight range. The
ordinary least-sguares technigue has a larger bilas that
increases with the distance from the data, but still provides

good predictions.

Reccmmendations for Further Research

There are several areas that can use further study.

First, the difference between the actual lot plot point and

D

the heuristic lot plct point for the first lot should be

investigated. Uow Close Jdoes the heurlstic agproximate tne
4nlt that hac the average cost of the first lct. The ;

difference may De oniy slight but the impact has not teen j

]
acdressed. If the heuristic i3 not a good approximator, then

1

new analysis should be done to see 1f an improved algoritim |
would improve the performance of the fitting technigues.
Second, the weighted least-squares technique should be
iavestigated further. Analysis should concentrate on fiading
a more accurate weighting of each lot. A more accurate

welghting should theoretically result in a better fit of

unegqual lot data. This possibility, too, should be checked. .
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e Third, additional fitting techniques should be investigated.
j'.&.
< The additional technigques should include nonlinear regression
f@ and other techniques not identified by this thesis. These
4 ‘.J
}3 new technigues should be compared among themselves and to the
o
C techniques investigated in this thesis. Fourth, statistical
fﬁ testing for significance of the biar should be considered.
,
o] Is a bias of two percent statistically significant? Is this
)

o .
h

apparent bias due to some other factor? The answer o the

[}
[{9]

(o}

. . . . :
. questions depends on the experimental design and samgle size.
.
! f- . . . . . . . -
N Resolution of this question might require replication and
N
4 . .
: expansion of the study from 100 production runs to 500 or
-\. N
}5 1300. Fifth, a program should be written so that the mean
AN
7ﬁ slope and the median slope techniques can be applied to real
'r-'.‘
[y . .
{ data. The comparison of results from these two techniqgues
‘;f and the ordinary least-squarecs and the weighted least-squares
.l
- technigques could be useful.
-
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